2022年內(nèi)蒙古工業(yè)大學(xué)高等代數(shù)碩士研究生考研大綱及參考書(shū)目

發(fā)布時(shí)間:2021-10-08 編輯:考研派小莉 推薦訪(fǎng)問(wèn):
2022年內(nèi)蒙古工業(yè)大學(xué)高等代數(shù)碩士研究生考研大綱及參考書(shū)目

2022年內(nèi)蒙古工業(yè)大學(xué)高等代數(shù)碩士研究生考研大綱及參考書(shū)目內(nèi)容如下,更多考研資訊請(qǐng)關(guān)注我們網(wǎng)站的更新!敬請(qǐng)收藏本站,或下載我們的考研派APP和考研派微信公眾號(hào)(里面有非常多的免費(fèi)考研資源可以領(lǐng)取,有各種考研問(wèn)題,也可直接加我們網(wǎng)站上的研究生學(xué)姐微信,全程免費(fèi)答疑,助各位考研一臂之力,爭(zhēng)取早日考上理想中的研究生院校。)

2022年內(nèi)蒙古工業(yè)大學(xué)高等代數(shù)碩士研究生考研大綱及參考書(shū)目 正文

科目名稱(chēng) 高等代數(shù) 科目代碼 804
一、考試范圍及要點(diǎn)
1、多項(xiàng)式
數(shù)域、多項(xiàng)式、整除、最大公因式、互素、不可約、k重因式及重因式的概念 整除的性質(zhì),帶余除法定理,最大公因式定理,互素的判別與性質(zhì),不可約多項(xiàng)式的判別與性質(zhì),多項(xiàng)式唯一因式分解定理,余式定理,因式定理、代數(shù)基本定理,高斯引理,Eisenstein判別定理,對(duì)稱(chēng)多項(xiàng)式基本定理,無(wú)重因式的充要條件及判別條件,復(fù)數(shù)域、實(shí)數(shù)域及有理數(shù)域上多項(xiàng)式因式分解理論,有理多項(xiàng)式的有理根范圍以及輾轉(zhuǎn)相除法,綜合除法。 
2、行列式
行列式,行列式的子式,余子式及代數(shù)余子式的概念,行列式的性質(zhì),按行、列展開(kāi)定理,Gramer法則,Laplace定理,行列式乘法公式 行列式的計(jì)算方法。
3、線(xiàn)性方程組
向量線(xiàn)性相關(guān),向量組等價(jià),極大無(wú)關(guān)組,向量組的秩,矩陣的秩,基礎(chǔ)解系,解空間等概念,線(xiàn)性方程組有解判別定理,線(xiàn)性方程組解的結(jié)構(gòu),行初等變換求解線(xiàn)性方程組的方法。
4、矩陣
 矩陣的概念,單位矩陣、對(duì)角矩陣、三角矩陣、對(duì)稱(chēng)陣、反對(duì)稱(chēng)陣的概念及其性質(zhì),矩陣的線(xiàn)性運(yùn)算、乘法、轉(zhuǎn)置,以及它們的運(yùn)算規(guī)律,矩陣的初等變換、初等矩陣的性質(zhì),矩陣等價(jià)的概念,初等變換法求矩陣的秩及逆矩陣,分塊矩陣。
5、二次型
二次型的概念及二次型的矩陣表示,二次型秩的概念,二次型的標(biāo)準(zhǔn)形,規(guī)范形的概念及慣性定律,合同變換,正交變換化二次型為標(biāo)準(zhǔn)形的方法,二次型和對(duì)應(yīng)矩陣的正定、半正定、負(fù)定、半負(fù)定及其判別法。
6、線(xiàn)性空間
線(xiàn)性空間,子空間,生成子空間,基底,維數(shù),坐標(biāo),過(guò)渡矩陣,子空間的和與直和等概念,線(xiàn)性空間同構(gòu)的概念?;鶖U(kuò)張定理,維數(shù)公式,直和的充要條件。
7、線(xiàn)性變換
線(xiàn)性變換,特征值,特征向量,特征多項(xiàng)式,特征子空間,不變子空間,線(xiàn)性變換的矩陣,相似變換,相似矩陣,線(xiàn)性變換的值域與核,Jardan標(biāo)準(zhǔn)形,最小多項(xiàng)式等概念 線(xiàn)性變換的性質(zhì),相似矩陣的性質(zhì),特征值、特征向量的性質(zhì),核空間與值域的性質(zhì),不變子空間的性質(zhì),Hamilton-Cayley定理及將線(xiàn)性空間V分解成A–不變子空間的條件和方法,最小多項(xiàng)式理論。線(xiàn)性變換的矩陣表示方法,求線(xiàn)性變換的特征值、特征向量的方法,矩陣可相似對(duì)角化的條件與方法。 
8、—矩陣
—矩陣, 矩陣在初等變換下的標(biāo)準(zhǔn)形,不變因子, 矩陣相似的條件,初等因子,若當(dāng)(Jordan)標(biāo)準(zhǔn)形的理論推導(dǎo)。 
9、歐幾里得空間
內(nèi)積,歐氏空間,向量長(zhǎng)度、夾角、距離、度量矩陣、標(biāo)準(zhǔn)正交基、正交補(bǔ)、正交變換、正交陣、對(duì)稱(chēng)變換、同構(gòu)等概念、Schmidt正交化方法、標(biāo)準(zhǔn)正交基的性質(zhì),正交變換的性質(zhì),正交陣的性質(zhì),對(duì)稱(chēng)變換的性質(zhì)及標(biāo)準(zhǔn)形,實(shí)對(duì)稱(chēng)陣的特征值、特征向量的性質(zhì),實(shí)對(duì)稱(chēng)陣相似(合同)對(duì)角化。
參考書(shū)目:
《高等代數(shù)》, 張禾瑞、郝鈵新,高等教育出版社,2007年第五版
內(nèi)蒙古工業(yè)大學(xué)

添加內(nèi)蒙古工業(yè)大學(xué)學(xué)姐微信,或微信搜索公眾號(hào)“考研派小站”,關(guān)注[考研派小站]微信公眾號(hào),在考研派小站微信號(hào)輸入[內(nèi)蒙古工業(yè)大學(xué)考研分?jǐn)?shù)線(xiàn)、內(nèi)蒙古工業(yè)大學(xué)報(bào)錄比、內(nèi)蒙古工業(yè)大學(xué)考研群、內(nèi)蒙古工業(yè)大學(xué)學(xué)姐微信、內(nèi)蒙古工業(yè)大學(xué)考研真題、內(nèi)蒙古工業(yè)大學(xué)專(zhuān)業(yè)目錄、內(nèi)蒙古工業(yè)大學(xué)排名、內(nèi)蒙古工業(yè)大學(xué)保研、內(nèi)蒙古工業(yè)大學(xué)公眾號(hào)、內(nèi)蒙古工業(yè)大學(xué)研究生招生)]即可在手機(jī)上查看相對(duì)應(yīng)內(nèi)蒙古工業(yè)大學(xué)考研信息或資源

內(nèi)蒙古工業(yè)大學(xué)考研公眾號(hào) 考研派小站公眾號(hào)

本文來(lái)源:http://m.zhangjiajieline.cn/neimenggugongyedaxue/cankaoshumu_485104.html

推薦閱讀